Concordance Among Pathologists in the Second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II)

Maria G. Crespo-Leiro, Andreas Zuckermann, Christoph Bara, Paul Mohacsi, Uwe Schulz, Andrew Boyle, Heather J. Ross, Jayan Parameshwar, Michael Zakliczyński, Roberto Fiocchi, Joerg Stuymman, Daniel Hoefer, Hans Lehmkuhl, Mario C. Deng, Pascal Leprince, Gerald Berry, Charles C. Marboe, Susan Stewart, Henry D. Tazelaar, Helen M. Baron, Ian-Charles Coleman, and Johan Vanhaecke

Background. There has been no large evaluation of the ISHLT 2004 acute cellular rejection grading scheme for heart graft endomyocardial biopsy specimens (EMBs).

Methods. We evaluated agreement within the CARGO II pathology panel and between the panel (acting by majority) and the collaborating centers (treated as a single entity), regarding the ISHLT grades of 937 EMBs (with all grades ≥R merged because of small numbers).

Results. Overall all-grade agreement was almost 71% both within the panel and between the panel and the collaborating centers but, in both cases, was largely because of agreement on grade 0: for the average pair of pathologists, fewer than a third of the EMBs assigned grade ≥R by at least one were assigned this grade by both.

Conclusion. The 2004 revision has done little to improve agreement on the higher ISHLT grades. An EMB grade ≥R is not by itself sufficient as a basis for clinical decisions or as a research criterion. Steps should be taken toward greater uniformity in EMB grading, and efforts should be made to replace the ISHLT classification with diagnostic criteria—EMB based or otherwise—that correspond better with the pathophysiology of the transplanted heart.

Keywords: Biopsy, Gene expression, Heart transplantation, Pathology, Rejection.

(Medical Research) Transplantation 2012;94: 1172–1177)
Immunosuppression after organ transplantation should be continually adapted to the individual and varying needs of a particular organ recipient. Current methods for monitoring immunosuppression—measuring serum levels of immunosuppressive drugs, noting the occurrence of side effects, looking for functional or morphologic evidence of rejection—seem to afford only a crude approximation that fails to allow adequate discrimination between underimmunosuppression and overimmunosuppression. After heart transplantation, the main criterion of underimmunosuppression is currently the detection of acute cellular rejection (ACR) by evaluation of the extent and distribution of lymphocytic infiltrates and associated alterations in tissue samples taken by endomyocardial biopsy (EMB) (1). However, a major weakness of this criterion lies in the large subjective component of the evaluation procedure. Improvement of concordance among pathologists was one of the aims of the International Society for Heart and Lung Transplantation (ISHLT) in its 2004 simplification of its 1990 classification (2, 3), but discrepant evaluations are still common, and there has been no large-scale evaluation of concordance among pathologists using the 2004 scheme. That EMB grading cannot by itself serve as the sole measure of immunosuppressive adequacy has been pointed out by Baran et al. (4), among others.

A noninvasive technique that is more objective than EMB grading is gene expression profiling of peripheral blood mononuclear cells (5–7). Further evidence for the clinical performance of a test using this technique is expected to emerge from the recently completed second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) (http://clinicaltrials.gov/ct2/show/NCT00761787). However, like other studies in which rejection is a criterion variable, studies evaluating novel tests of rejection face a major problem in interrater disagreement on EMB grades, the reference method (‘‘gold standard’’) for evaluation of ACR. Such disagreement has, on occasions, led to crucial ambiguity in the significance of study outcomes (e.g., to discrepancy in the significance of effects, looking for functional or morphologic evidence of rejection—seem to afford only a crude approximation that fails to allow adequate discrimination between underimmunosuppression and overimmunosuppression. After heart transplantation, the main criterion of underimmunosuppression is currently the detection of acute cellular rejection (ACR) by evaluation of the extent and distribution of lymphocytic infiltrates and associated alterations in tissue samples taken by endomyocardial biopsy (EMB) (1). However, a major weakness of this criterion lies in the large subjective component of the evaluation procedure. Improvement of concordance among pathologists was one of the aims of the International Society for Heart and Lung Transplantation (ISHLT) in its 2004 simplification of its 1990 classification (2, 3), but discrepant evaluations are still common, and there has been no large-scale evaluation of concordance among pathologists using the 2004 scheme. That EMB grading cannot by itself serve as the sole measure of immunosuppressive adequacy has been pointed out by Baran et al. (4), among others.

A noninvasive technique that is more objective than EMB grading is gene expression profiling of peripheral blood mononuclear cells (5–7). Further evidence for the clinical performance of a test using this technique is expected to emerge from the recently completed second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) (http://clinicaltrials.gov/ct2/show/NCT00761787). However, like other studies in which rejection is a criterion variable, studies evaluating novel tests of rejection face a major problem in interrater disagreement on EMB grades, the reference method (‘‘gold standard’’) for evaluation of ACR. Such disagreement has, on occasions, led to crucial ambiguity in the significance of study outcomes (e.g., to discrepancy in the significance of

Table 1. Positive grade-specific agreement, negative grade-specific agreement, and overall (all-grade) agreement between panel pathologists on the ISHLT 2004 grade of EMB samples

<table>
<thead>
<tr>
<th>Pathologists</th>
<th>Grade 0R</th>
<th>Grade 1R</th>
<th>Grade ≥2R</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA NA</td>
<td>PA NA</td>
<td>PA NA</td>
<td>PA NA</td>
</tr>
<tr>
<td>P1–P2</td>
<td>60.8 (55.3–66.1)</td>
<td>58.3 (52.7–63.8)</td>
<td>40.7 (35.1–46.4)</td>
<td>56.4 (51.5–61.3)</td>
</tr>
<tr>
<td>P1–P3</td>
<td>57.4 (52.1–62.8)</td>
<td>52.7 (47.2–58.4)</td>
<td>40.6 (34.8–46.6)</td>
<td>58.3 (53.4–63.4)</td>
</tr>
<tr>
<td>P1–P4</td>
<td>57.3 (51.9–62.7)</td>
<td>53.8 (47.9–59.4)</td>
<td>43.7 (37.7–49.5)</td>
<td>57.6 (52.5–62.7)</td>
</tr>
<tr>
<td>P2–P3</td>
<td>71.3 (66.6–75.7)</td>
<td>60.6 (54.8–66.3)</td>
<td>53.7 (47.7–59.6)</td>
<td>70.1 (65.6–74.6)</td>
</tr>
<tr>
<td>P2–P4</td>
<td>68.6 (64.1–73.3)</td>
<td>55.3 (49.4–61.5)</td>
<td>50.4 (44.2–56.8)</td>
<td>69.0 (64.6–73.6)</td>
</tr>
<tr>
<td>P3–P4</td>
<td>71.6 (66.9–76.1)</td>
<td>57.9 (51.5–64.1)</td>
<td>53.0 (46.3–59.6)</td>
<td>72.4 (67.9–76.8)</td>
</tr>
</tbody>
</table>

Top panel: pairwise agreement for each pair of pathologists. Middle panel: average agreement of each pathologist with the other three. Bottom panel: average overall all pathologist pairs. Agreement values are expressed as percentages; in parentheses, estimated 95% confidence intervals.

PA, positive agreement; NA, negative agreement.
hide the poor performance on this grade. The salient feature of the data of Table 1 is the increasing discrepancy between positive and negative agreement values as grades increase.

Agreement Between Local Center and Panel Grading

Table 2 shows, for each set of EMBs assigned a given grade by the local center, its distribution by panel-assigned grade, together with the number for which the panel failed to reach a majority decision ("ungraded"). It may be noted that the panel reached a majority agreement on all but 0.9% of EMBs that were locally assigned grade 0, but failed to reach agreement on 4.1% of local grade 1Rs and 19.2% of local grade ≥2Rs. Also, there was a general trend for the panel to assign lower grades than local centers (except, of course, for grade 0): 35% of local grade 1Rs and 52% of local grade ≥2Rs were given lower grades by the panel, while only 14% of local grade 0s and 3% of local grade 1Rs were given higher grades by the panel. Table 3 lists the corresponding formal agreement results. That the estimated 95% confidence intervals are somewhat narrower than for the within-panel data of Table 1 is attributable to the larger number of cases, each pair of panel members having only seen about 500 EMBs. Note that the discrepancy between positive and negative agreement values increases with grade in the same way as between panel members, as does negative agreement itself.

DISCUSSION

The above results confirm that EMB grading is far from being a totally objective procedure, if "objective" is understood to mean that a given EMB sample will be given the same grade by any competent, appropriately trained pathologist. Overall pairwise agreement between panel members regarding ISHLT 2004 grades ranged from 65% to 77%, while agreement in this respect between the panel and the local centers, 70.7%, was virtually identical to overall within-panel agreement, 70.8%. These figures are nevertheless within the range reported for a number of other areas of medicine, the same grade by any competent, appropriately trained pathologist. Overall pairwise agreement between panel members having only seen about 500 EMBs. Note that the discrepancy between positive and negative agreement values increases with grade in the same way as between panel members, as does negative agreement itself.

TABLE 3. Agreement (%) between panel and local centers on ISHLT 2004 grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>PA</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0R</td>
<td>62.1 (58.1–66.1)</td>
<td>58.7 (54.5–62.9)</td>
</tr>
<tr>
<td>1R</td>
<td>50.0 (45.5–54.5)</td>
<td>61.0 (57.2–64.8)</td>
</tr>
<tr>
<td>≥2R</td>
<td>28.4 (18.4–38.8)</td>
<td>94.0 (92.3–95.5)</td>
</tr>
<tr>
<td>Overall</td>
<td>70.7 (67.7–73.7)</td>
<td></td>
</tr>
</tbody>
</table>

In parentheses, estimated 95% confidence intervals.

PA, positive agreement; NA, negative agreement.

Both within the panel, and between panel and local centers, positive agreement decreased with increasing grade from 62–65% to 26–28%, while negative agreement increased from 56–59% to 93–94%. The pathologists showed moderate agreement both as to which EMBs were grade 0 and which were not, but whereas EMBs classified as not of grade ≥2R by one pathologist were highly likely to be similarly classified by others, an EMB graded ≥2R by one pathologist was quite unlikely to receive this grade from a given second pathologist. Thus, discouragingly, ISHLT grading is least objective when trying to fulfill one of its main purposes (detection of significant ACR), and most objective when trying to prove a negative result (absence of significant ACR), a goal for which it is unsuited because of the possibility of damaged tissue being missed at biopsy.

In principle, the discrepancies noted above should not have been influenced by any antibody-mediated rejection (AMR). AMR and ACR are sufficiently clearly distinguished in the 2004 ISHLT recommendations, and the present analysis concerned only ACR. Nevertheless, it cannot absolutely be
ruled out that there may have been cases in which the presence of AMR may have hampered ACR grading, and that these may have influenced the results.

The fact that on average any pathologist assigns grades <2R to over half the EMB samples that another pathologist would classify as grade ≥2R must contribute to reported apparent anomalies in patient outcome. For example, it has been observed that among patients with rejection and severely compromised hemodynamics, an initial rejection grade <3A (2R) is associated with a worse 2-year survival rate than a grade ≥3A (2R) (13). Such contradictions highlight the absence of a solid pathophysiological basis for the ISHLT EMB classification (14). Unless and until EMB samples can be classified with regard to ACR in a physiologically more meaningful way, doubt attends both their validity for evaluation of new therapies - in this field their exclusive use should probably be replaced by their joint consideration together with other factors determining long-term outcome (4) - and their role in long-term follow-up (15). An EMB classification with greater physiological correlation will no doubt require the use of immunohistochemical, genomic and/or proteomic methods (16).

One of the weaknesses of this study, asymmetry of information between panel and local centers, has already been discussed above. A related limitation was the inability of the panel pathologists to seek further information by requesting additional procedures such as the cutting of additional sections or the use of additional stains; had panel members been able to obtain this information they might have achieved a greater degree of agreement (although this does not invalidate the agreement results in regard to the EMB material actually seen).

A further weakness of the study, perhaps its greatest, was the restriction of the number of EMBs that were locally assigned ISHLT 1990 grades of 0 or 1A. Although the set of EMB specimens provided to the panel was appropriate for the main goals of CARGO II, the sample of 937 EMBs used in this pathology substudy was not quantitatively representative of the general population of HT EMB specimens, and the observed concordance may accordingly be slightly biased.

In conclusion, this study has shown that the pathologists constituting the central pathology panel of the CARGO II study tended to assign lower ISHLT ACR grades to hematoxylin–eosin–stained EMB samples than did local pathologists, but within-panel agreement was no better than agreement between their majority decision and the grade assigned at the centers of origin of the samples. Overall (all-grade) agreement using the 2004 ISHLT classification showed little if any improvement with respect to a previous evaluation of the 1990 classification (9), although it was similar to those reported in many other medical fields. Moreover, the fair degree of overall agreement was due very largely to agreement on grade 0 specimens; for the average pair of pathologists, fewer than a third of EMBs assigned grade ≥2R by at least one were assigned this grade by both. In keeping with two recent small studies (17, 18), these findings suggest that, although the 2004 revision simplified the ISHLT classification, it has done little to improve agreement on the upper grades. Greater uniformity in EMB interpretation should be sought in the short term by means of workshops, “clinics,” or other such events and in the long term by research to identify EMB characteristics that more accurately reflect the physiology of the transplanted heart. Because, in practice, EMB findings are not the sole basis for clinical decisions but are used together with other information (especially hemodynamic parameters), it is also possible that benefit for clinical practice and/or research methodology might accrue from the formal integration of these various factors in a single ACR grading system or, more generally, in a classification encompassing both ACR and AMR.

MATERIALS AND METHODS

Patients, Samples, and Sample Evaluation

Between January 2005 and November 2008, 754 heart transplant recipients were enrolled in the CARGO II study at 17 centers in Austria (2), Belgium, Canada, France, Germany (4), Italy, Poland, Spain, the United Kingdom, the USA (3) and Switzerland (hereinafter the “local centers”) after giving informed consent to the performance of EMB as part of routine care, the collection of blood samples for research purposes, and the use of clinical data. The study protocol was approved by the institutional review board or ethics committee of each center. Patients could be enrolled at any time after transplantation, and received the standard of care at the institution treating them, the study requiring no additional intervention. No patients were excluded on medical grounds.

Within the study period, 4,767 EMB samples were obtained from 631 of the enrolled patients. These samples were included in the main CARGO II analyses only if they fulfilled the following conditions: 1) a blood sample had been properly collected in accordance with the CARGO II protocol during the clinical visit in which the EMB was performed; 2) the patient had not experienced an episode of rejection (defined by a locally assigned grade ≥3A (2R) or record of rejection treatment and/or augmentation of the immunosuppressive regimen in the case report form) within the 60 days before EMB and had not been receiving 20 mg or more of oral corticosteroids in the 21 days before EMB; and 3) EMB had been performed at least 35 days after transplantation, at least 21 days after any therapy for ACR, and at least 30 days after any transfusion of red blood cells. EMBs fulfilling these conditions were included in the present study of concordance among pathologists only if they also fulfilled the following additional conditions: 4) an ISHLT 1990 grade assigned to the EMB by the pathologist at the local center of origin was available; 5) they were not samples of locally assigned grades 0 or 1A from patients from whom a sample of the same grade had already been included in the study (this criterion was applied to prevent the study from being overloaded with the highly prevalent grade 0 and grade 1A samples); 6) all hematoxylin–eosin–stained slides used for evaluation by the local center pathologist were sent to the study organizers for blind grading by an independent central panel (hereinafter “the panel”) composed of the pathologists G. Berry, C. Marboe, S. Stewart, and H. Tazelaar; and 7) grades were obtained from at least two of the three panel members to whom each EMB was sent for independent evaluation. These seven conditions were satisfied by 937 EMBs from 462 patients.

Evaluation of Concordance

In evaluating concordance between the central panel and local centers (these latter considered as a single entity), ISHLT 1990 grades were mapped onto ISHLT 2004 grades in the usual way, and grades 2R and 3R were merged as “grade ≥2R” because of small numbers of cases. Each EMB was considered to have been awarded an ISHLT grade by the panel if at least two panel members awarded it the same grade (hereinafter “the panel grade”); otherwise it was considered as ungraded. The concordance between panel and local center, and pairwise concordances between panel members, were assessed in terms of specific positive and negative agreement for each ISHLT grade on a per EMB basis, that is, positive agreement on grade x was calculated as the proportion of the EMBs seen by both raters and assigned...
grade x by at least one, that were actually assigned that grade by both; and negative agreement as the proportion of those assigned some other grade by at least one that were actually assigned grade x by neither (19). Both positive and negative agreements were calculated to avoid the possibly misleading effects of large differences in grade prevalences. In addition, pairwise overall agreement within each pair of panel pathologists, or between panel and local center assignments, was calculated as the proportion of the EMBs seen by both to which they both assigned the same grade; the average grade-specific and overall concordance of a given panel pathologist P with the other three was calculated; and the grade-specific and overall internal agreement of the whole panel was determined as the weighted average of those of the four pathologists.

Statistical Analyses

Estimated 95% confidence intervals for positive and negative agreement were obtained using a percentile bootstrap method. All statistical calculations were performed using R.

ACKNOWLEDGMENTS

The authors thank the heart transplant patients enrolled in the CARGO II study and the CARGO II coordinators at the following medical centers for their contributions to this work: Hospital Universitario A Coruña, La Coruña, Spain; Ruhr University of Bochum, Bad Oeynhausen, Germany; University Hospital of Leuven, Leuven, Belgium; Medical University of Vienna, Vienna, Austria; Hannover Medical School, Hannover, Germany; University Hospital Bern, Bern, Switzerland; Texas Heart Institute at St. Luke’s Episcopal Hospital, Houston, TX; University of Minnesota, Minneapolis, MN; Toronto General Hospital, Toronto, Canada; Papworth Hospital, Cambridge, United Kingdom; Silesian Center for Heart Disease, Zabrze, Poland; Ospedali Riuniti di Bergamo, Bergamo, Italy; University Hospital Muenster, Muenster, Germany; Innsbruck Medical University, Innsbruck, Austria; Deutsches Herzzentrum, Berlin, Germany; Columbia University Medical Center, New York, NY; Groupe Hospitalier Pitié-Salpêtrière, Paris, France.

1. **CARGO II Principal Investigators and Study Sites**
 - Maria G. Crespo-Leiro, Hospital Universitario A Coruña, La Coruña, Spain
 - Johan Vanhaecke, Cardiovascular Diseases, University Hospitals Leuven, and Department of Cardiovascular Sciences, KU Leuven, Belgium
 - Andreas Zuckermann, Medical University of Vienna, Austria
 - Christoph Bara, Hannover Medical School, Hannover, Germany
 - Paul Mohaci, University Hospital Bern, Bern, Switzerland
 - Uwe Schulz, Ruhr University of Bochum, Bad Oeynhausen, Germany
 - Roberta C. Bogaei, Texas Heart Institute at St. Luke’s Episcopal Hospital, Houston, TX
 - Andrew Boyle, University of Minnesota, Minneapolis, MN
 - Heather Ross, Toronto General Hospital, Toronto, Canada
 - Jayan Parameshwar, Papworth Hospital, Cambridge, United Kingdom
 - Michal Zakliczyński, Silesian Center for Heart Disease, Zabrze, Poland
 - Roberto Ficocci, Ospedali Riuniti di Bergamo, Bergamo, Italy
 - Joerg Stypmann, Department of Cardiovascular Medicine, Division of Cardiology, University Hospital Münster, Münster, Germany
 - Daniel Hoefer, Innsbruck Medical University, Innsbruck, Austria
 - Hans Lehmkühl, Deutsches Herzzentrum, Berlin, Germany
 - Mario C. Deng, Columbia University Medical Center, New York, NY
 - Pascal Leprince, Groupe Hospitalier Pitié-Salpêtrière, Paris, France

2. **CARGO II Study Pathologists and Institutions**
 - Gerald Berry, Stanford University Medical Center, Stanford, CA
 - Charles C. Marboe, College of Physicians and Surgeons of Columbia University, New York, NY
 - Susan Stewart Papworth Hospital Pathology Department, Papworth Everard, Cambridge, UK
 - Henry D Tazelaar, Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ

3. **XDx, study sponsor**
 - Helen M. Baron, Michael Brown, Kenneth C. Fang, Tod M. Klingler, Hans J. Wolters, Upen Patil, Debbie Pierretti, Joyce Alejo-Stone, Weiyou Liu, Nitzan Sternheim

REFERENCES